Flight-appropriate 3D Terrain-rendering Toolkit for Synthetic Vision, Phase II

Completed Technology Project (2005 - 2007)

Project Introduction

The TerraBlocks

TM

3D terrain data format and terrain-block-rendering methodology provides an enabling basis for successful commercial deployment of flight-appropriate and certifiable Synthetic Vision (SV) systems. The methodology focuses on mission-critical, real-time, embedded terrain rendering with emphasis on 1) efficient and compact terrain/texture dataset storage, 2) rendering accuracy, 3) rendering determinacy, and 4) a lightweight embedded computer and data storage platform. The innovation exploits the use of an encoded terrain data storage format coupled with real-time, terrain-block-based 3D rendering. The compact and efficient TerraBlocks encoded terrain data format inherently provides zero-error full-mesh near-field terrain data, powers-of-2 levels of detail, and data compression of full-mesh source terrain datasets. The TerraBlocks terrain block-based rendering provides deterministic render rates bounded by worst-case processing requirements, an on-the-sphere rendering model, and spatially-filtered, smoothly continuous, level-of-detail rendering. TerraBlocks technology closes the gap between existing visualization/simulation (VisSim) terrain-rendering approaches and the accuracy, performance, and platform demands of flight-deployable SV systems. The Phase I project conclusively showed the technical merit and feasibility of the TerraBlocks methodology. The Phase II project objective is to provide a flight-appropriate, research SV 3D terrain-rendering toolkit for NASA's Aviation Safety and Security Program (AvSSP) and the solid basis for Phase III, flight-certifiable SV avionics embodiments.

Primary U.S. Work Locations and Key Partners

Flight-appropriate 3D Terrainrendering Toolkit for Synthetic Vision, Phase II

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Langley Research Center (LaRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Flight-appropriate 3D Terrain-rendering Toolkit for Synthetic Vision, Phase II

Completed Technology Project (2005 - 2007)

Organizations Performing Work	Role	Туре	Location
Langley Research Center(LaRC)	Lead Organization	NASA Center	Hampton, Virginia
TerraMetrics, Inc.	Supporting Organization	Industry	Littleton, Colorado

Primary U.S. Work Locations	
Colorado	Virginia

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Project Manager:

Arthur B Maples

Principal Investigator:

Rebecca L Keiser

Technology Areas

Primary:

- TX02 Flight Computing and Avionics
 - □ TX02.2 Avionics Systems and Subsystems
 - □ TX02.2.2 Aircraft Avionics Systems

